游客
题文

如图,分别以菱形BCED的对角线BE、CD所在直线为轴、轴建立平面直角坐标系,抛物线<0)过B、C两点,与轴的负半轴交于点A,且∠ACB=90°.点P是轴上一动点,设点P的坐标为(,0),过点P作直线垂直于轴,交抛物线于点Q.

(1)求点A、B、C的坐标及抛物线的解析式;
(2)当点P在线段OB上运动时,直线交BD于点M,试探究:
①求MQ的大小;(用含的化简式子表示)
②当为何值时,四边形CQBM的面积取得最大值,并求出这个最大值.
(3)当点P在线段EB上运动时,是否存在点 Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由

科目 数学   题型 解答题   难度 较易
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本小题12分)已知椭圆C的中心在坐标原点O,焦点在x轴上,离心率等于
它的一个顶点B恰好是抛物线的焦点。
(1)求椭圆C的方程;
(2)直线与椭圆C交于两点,那么椭圆C的右焦点是否可以成为的垂心?若可以,求出直线的方程;若不可以,请说明理由.(注: 垂心是三角形三条高线的交点)

(本小题12分) 如图,在边长为12的正方形中,点B、C在线段AA′上,且AB=3,BC=4.作BB1∥AA1,分别交A1A1′、AA1′于点B1、P;作CC1∥AA1,分别交A1A1′、AA1′于点C1、Q. 现将该正方形沿BB1,CC1折叠,使得与AA1重合,构成如图(2)所示的三棱柱ABC-A1B1C1.

(1)在三棱柱ABC-A1B1C1中,求证:AP⊥BC;
(2)在三棱柱ABC-A1B1C1中,连接AQ与A1P,求四面体AA1QP的体积;
(3)在三棱柱ABC- A1B1C1中,求直线 PQ与直线AC所成角的余弦值.

(本小题13分)如图,在直三棱柱ABC-A1B1C1中,,点E、F、G分别是AA1
AC、BB1的中点,且CG⊥C1G .

(1)求证:CG//面BEF;
(2)求证:面BEF⊥面A1C1G .

(本小题13分)已知命题A:方程表示焦点在轴上的椭圆;
命题B:实数使得不等式成立。
(1)若命题A为真,求实数的取值范围;
(2)若命题B是命题A的必要不充分条件,求实数的取值范围。

(本小题13分)已知双曲线的离心率为,实轴长为2。
(1)求双曲线C的方程;
(2)若直线被双曲线C截得的弦长为,求的值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号