(本小题13分)已知函数的一系列对应值如下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
|
![]() |
|
![]() |
(1)根据表格提供的数据求函数的解析式;
(2)求函数的单调递增区间和对称中心;
(3)若当时,方程
恰有两个不同的解,求实数
的取值范围.
数列{an}中,a1=1,当时,其前n项和满足
.
(Ⅰ)求Sn的表达式;
(Ⅱ)设,数列{bn}的前n项和为
,求
.
如图,在四棱锥中,底面
是边长为
的菱形,
,
底面
,
,
为
的中点,
为
的中点.
(Ⅰ)求四棱锥的体积;
(Ⅱ)证明:直线平面
.
已知函数为常数).
(Ⅰ)求函数的最小正周期;
(Ⅱ)若时,
的最小值为
,求a的值.
已知函数.
(Ⅰ)当时,求曲线
在
处的切线方程;
(Ⅱ)设函数,求函数
的单调区间;
(Ⅲ)若在上存在一点
,使得
<
成立,求
的取值范围.
已知、
分别是椭圆
的左、右焦点,右焦点
到上顶点的距离为2,若
.
(Ⅰ)求此椭圆的方程;
(Ⅱ)点是椭圆的右顶点,直线
与椭圆交于
、
两点(
在第一象限内),又
、
是此椭圆上两点,并且满足
,求证:向量
与
共线.