(本小题满分14分)
在平面直角坐标系中,已知圆
和圆
.
(1)若直线过点
,且被圆
截得的弦长为
,求直线
的方程;
(2)在平面内是否存在一点,使得过点
有无穷多对互相垂直的直线
和
,它们分别与圆
和圆
相交,且直线
被圆
截得的弦长的
倍与直线
被圆
截得的弦长相等?若存在,求出所有满足条件的
点的坐标;若不存在,请说明理由.
![]() |
(本小题满分14分)
如图,已知,
.
(1)试用向量来表示向量
;
(2)若向量,
的终点在一条直线上,
求实数的值;
(3)设
,当
、
、
、
四点共圆时, 求
的值.
![]() |
(本小题满分13分)
从某校高一年级参加期末考试的学生中抽出名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(1)根据频率分布直方图估计这次考试该年级的数学平均分;
(2) 已知在[90,100]内的学生的数学成绩都不相同,且都在95分以上(不含95分),现用简单随机抽样方法,从这
个数中任取
个数,求这
个数恰好是两名学生的数学成绩的概率.
![]() |
(本小题满分13分)
已知向量满足
,其中
.
(1)求和
的值;
(2)若,求
的值.
(本小题满分13分)
已知函数.
(1)求的单调递增区间;
(2)函数的图象经过怎样的平移可使其对应的函数成为偶函数? 请写出一种正确的平移方法,并说明理由.