游客
题文

如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.

(1)判断AB,AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果精确到0.1km).
(参考数据:≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形
登录免费查看答案和解析
相关试题

定义:有三个内角相等的四边形叫三等角四边形.

(1)三等角四边形 ABCD 中, A = B = C ,求 A 的取值范围;

(2)如图,折叠平行四边形纸片 DEBF ,使顶点 E F 分别落在边 BE BF 上的点 A C 处,折痕分别为 DG DH .求证:四边形 ABCD 是三等角四边形.

(3)三等角四边形 ABCD 中, A = B = C ,若 CB = CD = 4 ,则当 AD 的长为何值时, AB 的长最大,其最大值是多少?并求此时对角线 AC 的长.

为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到 0 . 1 ) ;活动后,再次检查这部分学生的视力,结果如表所示.

分组

频数

4 . 0 x < 4 . 2

2

4 . 2 x < 4 . 4

3

4 . 4 x < 4 . 6

5

4 . 6 x < 4 . 8

8

4 . 8 x < 5 . 0

17

5 . 0 x < 5 . 2

5

(1)求所抽取的学生人数;

(2)若视力达到4.8及以上为达标,估计活动前该校学生的视力达标率;

(3)请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.

请用学过的方法研究一类新函数 y = k x 2 ( k 为常数, k 0 ) 的图象和性质.

(1)在给出的平面直角坐标系中画出函数 y = 6 x 2 的图象;

(2)对于函数 y = k x 2 ,当自变量 x 的值增大时,函数值 y 怎样变化?

保护视力要求人写字时眼睛和笔端的距离应超过 30 cm ,图1是一位同学的坐姿,把他的眼睛 B ,肘关节 C 和笔端 A 的位置关系抽象成图2的 ΔABC ,已知 BC = 30 cm AC = 22 cm ACB = 53 ° ,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据: sin 53 ° 0 . 8 cos 53 ° 0 . 6 tan 53 ° 1 . 3 )

如图,点 P 在矩形 ABCD 的对角线 AC 上,且不与点 A C 重合,过点 P 分别作边 AB AD 的平行线,交两组对边于点 E F G H

(1)求证: ΔPHC ΔCFP

(2)证明四边形 PEDH 和四边形 PFBG 都是矩形,并直接写出它们面积之间的关系.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号