如图,在平四边形ABCD中,对角线AC与BD相交于点O,P为线段BC上一点(除端点外),连接PO并延长交AD于点Q,延长BC到点E,使CE=BC,连接DE.
(1)求证:BP=DQ;
(2)已知AB=5,AC=6,若CD=BE,求△BDE的周长.
平面直角坐标系xOy中,抛物线与x轴交于点A、点B,与y轴的正半轴交于点C,点 A的坐标为(1, 0),OB=OC,抛物线的顶点为D.
(1) 求此抛物线的解析式;
(2) 若此抛物线的对称轴上的点P满足∠APB=∠ACB,求点P的坐标;
(3) Q为线段BD上一点,点A关于∠AQB的平分线的对称点为,若
,求点Q的坐标和此时△
的面积.
等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F.(1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;
(2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围;
(3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.
甲船从A港出发顺流匀速驶向B港,乙船同时从B港出发逆流匀速驶向A港.甲船行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.已知甲、乙两船在静水中的速度相同,救生圈落入水中漂流的速度和水流速度都等于1.5km/h.甲、乙两船离A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.
(1)甲船在顺流中行驶的速度为km/h,m=;
(2)①当0≤x≤4时,求y2与x之间的函数关系式;
② 甲船到达B港时,乙船离A港的距离为多少?
(3)救生圈在水中共漂流了多长时间?
如图,以△ABC的边AB为直径的⊙O与边BC交于点D,过点D作DE⊥AC,垂足为E,延长AB、ED交于点F,AD平分∠BAC.(1)求证:EF是⊙O的切线;(2)若AE=3,BF=2,求⊙O的半径.
如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).