(本小题满分10分)选修4—4:坐标系与参数方程
已知曲线:
(
为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)将曲线的参数方程化为普通方程,将曲线
的极坐标方程化为直角坐标方程;
(Ⅱ)设为曲线
上的点,点
的极坐标为
,求
中点
到曲线
上的点的距离的最小值.
某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:
分组 |
频数 |
频率 |
[0,1) |
10 |
0.10 |
[1,2) |
![]() |
0.20 |
[2,3) |
30 |
0.30 |
[3,4) |
20 |
![]() |
[4,5) |
10 |
0.10 |
[5,6] |
10 |
0.10 |
合计 |
100 |
1.00 |
(1)求右表中和
的值;
(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.
已知函数,
.
(1)写出函数的周期;
(2)将函数图象上的所有的点向左平行移动
个单位,得到函数
的图象,写出函数
的表达式,并判断函数
的奇偶性.
已知,直线
,
为平面上的动点,过点
作
的垂线,垂足为点
,且
.
(1)求动点的轨迹曲线
的方程;
(2)设动直线与曲线
相切于点
,且与直线
相交于点
,试探究:在坐标平面内是否存在一个定点
,使得以
为直径的圆恒过此定点
?若存在,求出定点
的坐标;若不存在,说明理由.
已知函数.
(1)试判断函数的单调性,并说明理由;
(2)若恒成立,求实数
的取值范围.
如图,三棱柱ABC-A1B1C1中,BC⊥侧面AA1C1C,AC=BC=1,CC1=2, ∠CAA1=,D、E分别为AA1、A1C的中点.
(1)求证:A1C⊥平面ABC;(2)求平面BDE与平面ABC所成角的余弦值.