游客
题文

(本小题满分10分)选修4—4:坐标系与参数方程
已知曲线 (为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为
(Ⅰ)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程;
(Ⅱ)设为曲线上的点,点的极坐标为,求中点到曲线上的点的距离的最小值.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:

分组
频数
频率
[0,1)
10
0.10
[1,2)

0.20
[2,3)
30
0.30
[3,4)
20

[4,5)
10
0.10
[5,6]
10
0.10
合计
100
1.00


(1)求右表中的值;
(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.

已知函数.
(1)写出函数的周期;
(2)将函数图象上的所有的点向左平行移动个单位,得到函数的图象,写出函数的表达式,并判断函数的奇偶性.

已知,直线为平面上的动点,过点的垂线,垂足为点,且
(1)求动点的轨迹曲线的方程;
(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.

已知函数
(1)试判断函数的单调性,并说明理由;
(2)若恒成立,求实数的取值范围.

如图,三棱柱ABC-A1B1C1中,BC⊥侧面AA1C1C,AC=BC=1,CC1=2, ∠CAA1=,D、E分别为AA1、A1C的中点.

(1)求证:A1C⊥平面ABC;(2)求平面BDE与平面ABC所成角的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号