(本小题满分15分)
已知二次函数满足条件:
①当时,
,且
;
②当时,
;
③在R上的最小值为0
(1)求的解析式;
(2)求最大的m(m>1),使得存在,只要
,就有
.
如图在三棱锥S中
,
,
,
,
.
(1)证明;
(2)求侧面与底面
所成二面角的大小;
(3)求点C到平面SAB的距离.
已知函数
(1)若分别表示甲、乙两人各掷一次骰子所得的点数,求f(x)=0有解的概率;
(2)若都是从区间[0,4]任取的一个实数,求f (1)>0成立的概率。
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,……,2005年编号为5,数据如下:
年份(x) |
1 |
2 |
3 |
4 |
5 |
人数(y) |
3 |
5 |
8 |
11 |
13 |
(1)从这5年中随机抽取两年,求考入大学的人数至少有年多于10人的概率;
(2)根据这年的数据,利用最小二乘法求出
关于
的回归方程
,并计算第
年的估计值.
参考:用最小二乘法求线性回归方程系数公式
设命题;命题
:不等式
对任意
恒成立.若
为真,且
或
为真,求
的取值范围.
求经过直线的交点M,且满足下列条件的直线方程:
(1)与直线2x+3y+5=0平行;
(2)与直线2x+3y+5=0垂直.