2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:
(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;
(2)分别求出这两个投资方案的最大年利润;
(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?
如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.
(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.
(1)求证:AB是⊙O的切线;
(2)若CD的弦心距为1,BE=EO,求BD的长.
某饮料厂为了开发新产品,用种果汁原料和
种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制
千克,两种饮料的成本总额为
元.
(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出与
之间的函数关系式;
(2)若用19千克种果汁原料和17.2千克
种果汁原料试制甲、乙两种新型饮料,右表是试验的相关数据;请你列出关于
且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使
值最小,最小值是多少?
如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数
的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;
(3)求△ABO的面积。
如图,把质地均匀的A、B两个转盘都分成三等分,玲玲和兰兰利用它们做游戏,同时自由转动两个转盘,当两个指针所停区域(停在分界线上重转)的数都是奇数或都是偶数时,则玲玲获胜,当两个指针所停区域的数是一奇一偶时,则兰兰获胜,列表或画树状图,用概率的知识说明这个游戏对她们是否公平?