如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.
(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);
(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);
(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).
已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.
(1)在图中画出△A′B′C′;
(2)写出点A′、B′的坐标;
(3)连接A′A、C′C,求四边形A′ACC′的面积.
如图,在四边形ABCD中,已知BE平分∠ABC,∠AEB=∠ABE,∠D=70°.
(1)说明:AD∥BC;
(2)求∠C的度数.
(1)计算:
(2)解方程组:
(3)解不等式组:.(将不等式组解集在数轴上表示出来)
已知直线y=x+3与x轴相交于点A,与y轴相交于点B,P是直线AB上的一个动点,过P点分别作x轴、y轴的垂线PE,PF,如图所示,
(1)若P为线段AB的中点,请求出OP的长度;
(2)若四边形PEOF是正方形时,求出P点坐标;
(3)P点在AB上运动过程中,EF是否有最小值?若有,请求出这个最小值;若没有请说明理由.
分别以△ABC的二边AC,BC为边向三角形外側作正方形ACDE和正方形BCFG,记△ABC,△DCF的面积分别为S1和S2.
①如图1,当∠ACB=90°时,求证:S1=S2;
②如图2,当∠ACB≠90°时.S1与S2是否仍然相等,请说明理由.