(本小题满分13分)已知函数(
、
为常数).
(Ⅰ)若,解不等式
;
(Ⅱ)若,当
时,
恒成立,求
的取值范围.
已知函数在
与
时都取得极值
(1)求的值与函数
的单调区间
(2)若对,不等式
恒成立,求
的取值范围
已知某工厂生产件产品的成本为
(元),
问:(1)要使平均成本最低,应生产多少件产品?
(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?
关于某设备的使用年限和所支出的维修费用
(万元),有如下的统计资料:
x |
2 |
3 |
4 |
5 |
6 |
y |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
(1)如由资料可知对
呈线形相关关系.试求:线形回归方程;(
,
)
(2)估计使用年限为10年时,维修费用是多少?
通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
男 |
女 |
总计 |
|
爱好 |
40 |
20 |
60 |
不爱好 |
20 |
30 |
50 |
总计 |
60 |
50 |
110 |
附:
![]() |
0.050 |
0.010 |
0.001 |
![]() |
3.841 |
6.635 |
10.828 |
试考查大学生“爱好该项运动是否与性别有关”,若有关,请说明有多少把握。
已知函数在区间
,
上有极大值
.
(1)求实常数m的值.
(2)求函数在区间
,
上的极小值.