如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.
(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标;
(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)
如图,已知矩形ABCD中,ABEF是正方形,且矩形CDFE与矩形ABCD相似,求矩形ABCD的宽与长的比。
如图,用长为18 m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.问矩形苗圃的一边长为多少时面积最大,最大面积是多少?
已知,求
的值
用配方法求二次函数y=-x2-x+的对称轴和顶点坐标。.
某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种无盖的长方体纸盒.(长方形的宽与正方形的边长相等)
(1)现有正方形纸板50张,长方形纸板l 00张,若要做竖式纸盒x个,横式纸盒y个.
①根据题意,完成以下表格:
![]() |
②若纸板全部用完,求x、y的值;
(2)若有正方形纸板80张,长方形纸板n张,做成上述两种纸盒,纸板恰好全部用完.
已知162<n<172,求n的值.