如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(1,4)、B(3,m)两点.
(1)求一次函数的解析式;
(2)求△AOB的面积.
(1)如图1,已知 垂直平分 ,垂足为 , 与 相交于点 ,连接 .求证: .
(2)如图2,在 中, , 为 的中点.
①用直尺和圆规在 边上求作点 ,使得 (保留作图痕迹,不要求写作法);
②在①的条件下,如果 ,那么 是 的中点吗?为什么?
阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想 转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程 ,可以通过因式分解把它转化为 ,解方程 和 ,可得方程 的解.
(1)问题:方程 的解是 , , ;
(2)拓展:用“转化”思想求方程 的解;
(3)应用:如图,已知矩形草坪 的长 ,宽 ,小华把一根长为 的绳子的一端固定在点 ,沿草坪边沿 , 走到点 处,把长绳 段拉直并固定在点 ,然后沿草坪边沿 、 走到点 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点 .求 的长.
京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点 、 和点 、 ,先用卷尺量得 , ,再用测角仪测得 , ,求该段运河的河宽(即 的长).
如图,已知点 在反比例函数 的图象上,过点 作 轴,垂足是 , .一次函数 的图象经过点 ,与 轴的正半轴交于点 .
(1)求点 的坐标;
(2)若四边形 的面积是3,求一次函数 的表达式.
将图中的 型、 型、 型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.
(1)搅匀后从中摸出1个盒子,求摸出的盒子中是 型矩形纸片的概率;
(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).