游客
题文

如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(1,4)、B(3,m)两点.

(1)求一次函数的解析式;
(2)求△AOB的面积.

科目 数学   题型 解答题   难度 中等
知识点: 平行线分线段成比例 一次函数的最值
登录免费查看答案和解析
相关试题

(1)如图1,已知 EK 垂直平分 BC ,垂足为 D AB EK 相交于点 F ,连接 CF .求证: AFE = CFD

(2)如图2,在 Rt Δ GMN 中, M = 90 ° P MN 的中点.

①用直尺和圆规在 GN 边上求作点 Q ,使得 GQM = PQN (保留作图痕迹,不要求写作法);

②在①的条件下,如果 G = 60 ° ,那么 Q GN 的中点吗?为什么?

阅读材料:各类方程的解法

求解一元一次方程,根据等式的基本性质,把方程转化为 x = a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想 转化,把未知转化为已知.

用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程 x 3 + x 2 2 x = 0 ,可以通过因式分解把它转化为 x ( x 2 + x 2 ) = 0 ,解方程 x = 0 x 2 + x 2 = 0 ,可得方程 x 3 + x 2 2 x = 0 的解.

(1)问题:方程 x 3 + x 2 2 x = 0 的解是 x 1 = 0 x 2 =    x 3 =   

(2)拓展:用“转化”思想求方程 2 x + 3 = x 的解;

(3)应用:如图,已知矩形草坪 ABCD 的长 AD = 8 m ,宽 AB = 3 m ,小华把一根长为 10 m 的绳子的一端固定在点 B ,沿草坪边沿 BA AD 走到点 P 处,把长绳 PB 段拉直并固定在点 P ,然后沿草坪边沿 PD DC 走到点 C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点 C .求 AP 的长.

京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点 A B 和点 C D ,先用卷尺量得 AB = 160 m CD = 40 m ,再用测角仪测得 CAB = 30 ° DBA = 60 ° ,求该段运河的河宽(即 CH 的长).

如图,已知点 A 在反比例函数 y = 4 x ( x > 0 ) 的图象上,过点 A AC x 轴,垂足是 C AC = OC .一次函数 y = kx + b 的图象经过点 A ,与 y 轴的正半轴交于点 B

(1)求点 A 的坐标;

(2)若四边形 ABOC 的面积是3,求一次函数 y = kx + b 的表达式.

将图中的 A 型、 B 型、 C 型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.

(1)搅匀后从中摸出1个盒子,求摸出的盒子中是 A 型矩形纸片的概率;

(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号