已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF
(1)如图1当点D在线段BC上时.求证CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变; ①请直接写出CF,BC,CD三条线段之间的关系;
②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.
以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是
的切线,连接OQ. 求
的大小;
(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被
截得的弦长.
将一块三角板的直角顶点放在正方形ABCD的对角线交点位置,两边与对角线重合如图甲,将这块三角板绕直角顶点顺时针方向旋转(旋转角小于90°)如图乙.⑴试判断△ODE和△OCF是否全等,并证明你的结论.
⑵若正方形ABCD的对角线长为10,试求三角板和正方形重合部分的面积.
已知是⊙
的直径,
是⊙
的切线,
是切点,
与⊙
交于点
.
(1)如图①,若
,
,求
的长(结果保留根号);
(2)如图②,若
为
的中点,求证:直线
是⊙
的切线.
将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌子上。⑴从中随机抽取两张卡片,求卡片正面上的数字之和大于4的概率;
⑵若先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,求组成的两位数恰好是3的倍数的概率(请用树状图或列表法加以说明).
某学校规定,该学校教师的每人每月用电量不超过A度,那么这个月只需交10元电费,如果超过A度,则这个月除了仍要交10元用电费外,超过部分还要按每度元交费.
⑴胡教师12月份用电90度,超过了规定的A度,则超过的部分应交电费多少元?(用含A的代数式表示)
⑵下面是该教师10月、11月的用电情况和交费情况:
月份 |
用电量(度) |
交电费总额(元) |
10月份 |
45 |
10 |
11月份 |
80 |
25 |
根据上表数据,求A值,并计算该教师12月份应交电费多少元?