(本小题满分12分)在直角坐标系中,已知圆的方程:,点是直线:上的任意点,过作圆的两条切线,切点为、,当取最大值时.(1)求点的坐标及过点的切线方程;(2)在的外接圆上是否存在这样的点,使(为坐标原点),如果存在,求出点的坐标,如果不存在,请说明理由.
设S为平面外的一点,SA=SB=SC,,若,求证:平面ASC平面ABC。
已知SA、SB、SC是共点于S的且不共面的三条射线,∠BSA=∠ASC=45°,∠BSC=60°,求证:平面BSA⊥平面SAC
如果两个相交平面都垂直于第三个平面,那么它们的交线也垂直于这个平面。 已知:β⊥α,γ⊥α,βγ=a求证:a⊥α
已知如图,P平面ABC,PA=PB=PC,∠APB=∠APC=60°,∠BPC=90°求证:平面ABC⊥平面PBC
如图02,在长方体ABCD-A1B1C1D1中,P、Q、R分别是棱AA1、BB1、BC上的点,PQ∥AB,C1Q⊥PR,求证:∠D1QR=90°.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号