游客
题文

如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.

(1)求证:PC是⊙O的切线;
(2)求证:BC=AB;
(3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值.

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

(本题12分)温州儿童玩具畅销国内外,工人小李在童星玩具厂工作.已知该厂生产A,B两种产品,小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟.
(1)小李生产1件A产品和B产品各需要几分钟?
(2)已知该厂工资待遇为:按件计酬,多劳多得,每月另加福利工资300元,全勤奖300元,按月结算.工人每生产一件A种产品和B产品分别可得报酬2.0元、2.6元,小李可能被分配到生产A,B两种产品中的一种或两种.
①如果小李可以自己选择一种产品生产,他选择哪种更合算?说明理由.
②如果小李4月份工作22天,每天8小时,且享受了该月的福利工资和全勤奖,试确定小李该月的工资收入范围.

(本题10分)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE。

(1)求证:AC=AE;
(2)求△ACD外接圆的半径。

(本题10分)已知反比例函数的图象经过点A(2,1).点M(m,n)(0<m<2)是该函数图象上的一动点,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.

(1)求反比例函数的函数解析式;
(2)当四边形OADM的面积为2时,请判断BM与DM是否相等,并说明理由.

(本题8分)某市每年都要举办中小学“三独”比赛(包括独唱、独舞、独奏三个类别),下图是该市2015年参加“三独”比赛的不完整的参赛人数统计图.

(1)该市参加“三独”比赛的总人数是 人,图中“独奏”所在扇形的圆心角的度数是 度,并把条形统计图补充完整;
(2)从这次参赛选手中随机抽取20人调查,其中有9人获奖,请你估算今年全市约有多少人获奖?

(本题8分)如图,△ABC是正方形网格中的格点三角形(顶点在格点上),请分别在图甲,
图乙的正方形网格内按下列要求画一个格点三角形.

(1)在图甲中,以AC为边画直角三角形,使它的一个锐角等于∠A或∠B,且与△ABC不全等;
(2)在图乙中,以AB为边画直角三角形,使它的一个锐角等于∠A或∠B,且与△ABC不全等.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号