【情境阅读】
在图1中,点A在边OB上,点D在边OC上,且AD∥BC﹒将这样的图形定义为“A型”﹒将△OAD绕着点O旋转α°(0<α<90)得到新的图形(如图2),将图2中的四边形A′B′C′D′称为“准梯形”,A′D′称为上底,B′C′称为下底﹒
【新知学习】
(1)若情境阅读中的△OBC是等腰直角三角形,OB=OC,∠BOC=90°,其余条件不变﹒
①请说明图2中的△O′A′B′≌△O′D′C′﹒
②在图1中,S四边形ABCD=S△OBC﹣S△OAD,请探索图2中的S四边形A′B′C′D′与图1中的S四边形ABCD的大小关系﹒
【变式探究】
(2)如图3,四边形ABCD是由有一个角是60°的“A型”通过旋转变换得到的“准梯形”,AD是上底,BC是下底,且AB=5,BC=8,CD=5,DA=2﹒求这个“准梯形”的面积.
【迁移拓展】
(3)如图4是由具有公共直角顶点的“A型”绕着直角定点旋转α°(0<α<90)得到的“准梯形”,斜边AD为上底,斜边BC为下底,且AB=3,BC=4,CD=6,AD=3
.求这个“准梯形”的面积.
某校教学楼后面紧邻着一个山坡,坡上面是一块平地,如图所示,
,
,斜坡
长为26米,坡角
.为了减缓坡面防止山体滑坡,保障安全,学校决定对该斜坡进行改造,经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.
(1)求改造前坡顶到地面的距离
的长(精确到0.1米);
(2)如果改造时保持坡脚
不动,坡顶
沿
向左移11米到
点处,问这样改造能确保安全吗?
(参考数据:
,
,
,
,
)
(11·钦州)
某生姜种植基地计划种植A、B两种生姜30亩.已知A、B两种生姜的年产量分别为2 000千克/亩、2 500千克/亩,收购单价分别是8元/千克、7元/千克.
(1)若该基地收获两种生姜的年总产量为68 000千克,求A、B两种生姜各种多少亩?
(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A、B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?
(11·钦州)
某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:频数分布表扇形统计图
组别 |
成绩 |
频数 |
A |
50≤x<60 |
3 |
B |
60≤x<80 |
m |
C |
70≤x<80 |
10 |
D |
80≤x<90 |
n |
E |
90≤x<100 |
15 |
(1)频数分布表中的m=_▲,n=_▲;
(2)样本中位数所在成绩的级别是_▲,扇形统计图中,E组所对应的扇形圆心角的度数是_▲;
(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有多少人?
(11·钦州)
如图,在平面直角坐标系中,点O为原点,反比例函数y=的图象经过点(1,4),菱形OABC的顶点A在函数的图象上,对角线OB在x轴上.
(1)求反比例函数的关系式;
(2)直接写出菱形OABC的面积.
(11·钦州)如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.