某公司生产的某种时令商品每件成本为20 元,经过市场调研发现,这种商品在未来40天内的日销售量Q(件)与时间t(天)的关系如下表:
时间(天) |
1 |
3 |
6 |
10 |
36 |
… |
日销售量(件) |
94 |
90 |
84 |
76 |
24 |
… |
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为:y1=t+25(1≤t≤20且t为整数);后20天每天的价格y2(元/件)与时间t(天)的函数关系式为:y2=﹣
t+40(21≤t≤40且t为整数).
(1)求Q(件)与时间t(天)的函数关系式;
(2)请预测未来40天中哪一天的销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20 天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.
如图, 中, 为 边上的一点, ,以线段 为边作 ,使得 , .求证: .
解不等式组: 并把解集在数轴上表示出来.
如图, 中, , 是 的外接圆, 的延长线交边 于点 .
[小题1]求证: ;
[小题2]当 是等腰三角形时,求 的大小;
[小题3]当 , 时,求边 的长.
在平面直角坐标系 中,直线 与 轴、 轴分别交于点 、 (如图).抛物线 经过点 .
[小题1]求线段 的长;
[小题2]如果抛物线 经过线段 上的另一点 ,且 ,求这条抛物线的表达式;
[小题3]如果抛物线 的顶点 位于 内,求 的取值范围.
已知:如图,在菱形 中,点 、 分别在边 、 上, , 的延长线交 的延长线于点 , 的延长线交 的延长线于点 .
[小题1]求证: ;
[小题2]如果 ,求证: .