【提出问题】如图1,小东将一张AD为12,宽AB为4的长方形纸片按如下方式进行折叠:在纸片的一边BC上分别取点P、Q,使得BP=CQ,连结AP、DQ,将△ABP、△DCQ分别沿AP、DQ折叠得△APM,△DQN,连结MN.小东发现线段MN的位置和长度随着点P、Q的位置发生改变.
【规律探索】
(1)请在图1中过点M,N分别画ME⊥BC于点E,NF⊥BC于点F.
求证:①ME=NF;②MN∥BC.
【解决问题】
(2)如图1,若BP=3,求线段MN的长;
(3)如图2,当点P与点Q重合时,求MN的长.
如图,点 在 内部, , .
(1)求证: ;
(2)设 的面积为 ,四边形 的面积为 ,求 的值.
筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心 为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦 长为6米, ,若点 为运行轨道的最高点 , 的连线垂直于 ,求点 到弦 所在直线的距离.
(参考数据: , ,
观察以下等式:
第1个等式: ,
第2个等式: ,
第3个等式: ,
第4个等式: ,
第5个等式: ,
按照以上规律,解决下列问题:
(1)写出第6个等式: ;
(2)写出你猜想的第 个等式: (用含 的等式表示),并证明.
为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?
如图,在边长为1个单位长度的小正方形组成的 的网格中,给出了以格点(网格线的交点)为端点的线段 .
(1)将线段 向右平移5个单位,再向上平移3个单位得到线段 ,请画出线段 .
(2)以线段 为一边,作一个菱形 ,且点 , 也为格点.(作出一个菱形即可)