(本小题满分10分)【选修4-4:坐标系与参数方程】
在平面直角坐标系xOy中,已知曲线C:为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:
=6.
(1)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值;
(2)过点M(一1,0)且与直线l平行的直线l1交C于A,B两点,求点M到A,B两点的距离之积.
用分析法证明:
设矩形ABCD(AB>AD)的周长为24,把它关于AC折起来,AB折过去后交CD于点P,如图,设AB=x,求△ADP的面积的最大值,及此时x的值.
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足.
(1)求Sn的表达式;
(2)设bn=,求{bn}的前n项和Tn.
已知函数f(x)=cos(2x+)+sin2x
(1)求函数f(x)的单调递减区间及最小正周期;
(2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=,cosB=
求b.
已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2+cos A=0.
(1)求角A的值;
(2)若a=2,b+c=4,求△ABC的面积.