已知向量=(
cosωx,1),
=(2sin(ωx+
),﹣1)(其中
≤ω≤
),
函数f(x)=•
,且f(x)图象的一条对称轴为x=
.
(1)求f(π)的值;
(2)若f()=
,f(
﹣
)=
,且
,
求cos(α﹣β)的值.
如图,在平面斜坐标系xOy中,∠xOy=60°,平面上任一点P关于斜坐标系的斜坐标是这样定义的:若=xe1+ye2(其中e1、e2分别为与x轴、y轴同方向的单位向量),则P点斜坐标为(x,y).
(1)若P点斜坐标为(2,-2),求P到O的距离|PO|;
(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程.
若方程ax2+ay2-4(a-1)x+4y=0表示圆,求实数a的取值范围,并求出半径最小的圆的方程.
已知圆M过两点A(1,-1),B(-1,1),且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设P是直线3x+4y+8=0上的动点,PA′、PB′是圆M的两条切线,A′、B′为切点,求四边形PA′MB′面积的最小值.
如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连结BC并延长至D,使得CD=BC,求AC与OD的交点P的轨迹方程.
P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.