(本小题满分12分)已知直线,半径为
的圆
与
相切,圆心
在
轴上且在直线
的上方
(1)求圆的方程;
(2)设过点的直线
被圆
截得的弦长等于
,求直线
的方程;
(3)过点的直线与圆
交于
两点(
在
轴上方),问在
轴正半轴上是否存在点
,使得
轴平分
?若存在,请求出点
的坐标;若不存在,请说明理由.
已知三棱柱ABC-A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E、F分别在棱AA′,CC′上,且AE=C′F=2.
(1) 求证:BB′⊥底面ABC;
(2)在棱A′B′上是否存在一点M,使得C′M∥平面BEF,若存在,求值,若不存在,说明理由
(3)求棱锥-BEF的体积
某市政府为了确定一个较为合理的居民用电标准,必须先了解全市居民日常用电量的分布情况.现采用抽样调查的方式,获得了n位居民在2012年的月均用电量(单位:度)数据,样本统计结果如下图表:
分组 |
频 数 |
频 率 |
[0, 10) |
0.05 |
|
[10,20) |
0.10 |
|
[20,30) |
30 |
|
[30,40) |
0.25 |
|
[40,50) |
0.15 |
|
[50,60] |
15 |
|
合计 |
n |
1 |
(1)求月均用电量的中位数与平均数估计值;
(2)如果用分层抽样的方法从这n位居民中抽取8位居民,再从这8位居民中选2位居民,那么至少有1位居民月均用电量在30至40度的概率是多少?
(3)用样本估计总体,把频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用电量在30至40度的居民数X的分布列.
一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
已知的展开式中,各项系数和与它的二项式系数和的比为32.
(1)求展开式中二项式系数最大的项;
(2)求展开式中系数最大的项.
选修4-5:不等式选讲
设函数的最小值为
.
(1)求;
(2)已知两个正数m,n满足,求
的最小值。