已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1,或x>16},分别根据下列条件求实数a的取值范围.
(1)A∩B=;(2)A⊆(A∩B).
如图,多边形ABCDE中,∠ABC=90°,AD∥BC,△ADE是正三角形,AD=2,AB=BC=1,沿直线AD将△ADE折起至△ADP的位置,连接PB,BC,构成四棱锥P-ABCD,使得PB=.点O为线段AD的中点,连接PO.
(1)求证:PO⊥平面ABCD;
(2)求二面角B-PC-D的大小的余弦值.
设在一个盒子中,放有标号为1,2,3的三张卡片,现从这个盒子里有放回地先后抽得两张卡片,标号分别记为x,y,设随机变量ξ=|x-2|+|y-x|
(1)写出随机变量ξ的取值集合(直接写出答案即可);
(2)求ξ的分布列和数学期望及方差.
已知点P(x1,y1),Q(x2,y2)是函数f(x)=sin(ωx+Φ)(ω>0,0<Φ<)图象上的任意两点,若|y1-y2|=2时,|x1-x2|的最小值为
,且函数f(x)的图象经过点(0,2),在△ABC中,角A,B,C的对边分别为a,b,c,且2sinAsinC+cos2B=1.
(1)求函数f(x)的解析式;
(2)求g(B)=f(B)+f(B+
)的取值范围.
(本小题满分14分) 已知函数在
处取得极值为
(1)求的值;
(2)若有极大值28,求
在
上的最大值。
(本小题满分13分)已知是等差数列,其前
项和为
,
是等比数列(
),且
,
(1)求数列与
的通项公式;
(2)记为数列
的前
项和,求