(本题分12分)
在中,角
的对边分别为
,
,
(Ⅰ)求的值;(Ⅱ)若
,求
的值.
(本小题满分15分)已知函数
(1)若函数在
上为增函数,求实数
的取值范围;
(2)当时,求
在
上的最大值和最小值;
(3)当时,求证对任意大于1的正整数
,
恒成立.
(本小题满分15分)已知椭圆经过点
,其离心率为
.
(1) 求椭圆的方程;
(2)设直线与椭圆
相交于
两点,以线段
为邻边作平行四边形
,其中顶点
在椭圆
上,
为坐标原点.求
到直线
的距离的最小值.
在等差数列中,
,其前
项和为
,等比数列
的各项均为正数,
,公比为
,且
,
.
(Ⅰ)求与
;(Ⅱ)证明:
≤
.
本题满分14分)已知向量 与
共线,设函数
.
(I) 求函数 的周期及最大值;
(II) 已知锐角 △ABC 中的三个内角分别为 A、B、C,若有 ,边 BC=
,
,求 △ABC 的面积.