游客
题文

小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:
       
(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?
答:我抽取的2张卡片是                  ,乘积的最大值为            
(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?
答:我抽取的2张卡片是                  ,商的最小值为            
(3)从中取出2张卡片,使这2张卡片上数字组成一个最大的数,如何抽取?最大的数是多少?
答:我抽取的2张卡片是                  ,组成的最大数为            
(4)从中取出4张卡片,用学过的运算方法,使结果为24.如何抽取?写出运算式子.
(写出一种即可).
答:我抽取的4张卡片是                              
算24的式子为                                            

科目 数学   题型 解答题   难度 中等
知识点: 幂的乘方与积的乘方
登录免费查看答案和解析
相关试题

如图,三角板ABC中,∠ACB=90°,AB=2,∠A=30°,三角板ABC绕直角顶点C顺时针旋转90°得到△A1B1C,求:

(1)的长;
(2)在这个旋转过程中三角板AC边所扫过的扇形ACA1的面积;
(3)在这个旋转过程中三角板所扫过的图形面积.

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1-x2|=
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.

(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.

在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是
(2)从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及B、C为顶点画四边形,求所画四边形是平行四边形的概率.(用树状图或列表法求解)

某班班委主动为班上一位生病住院的同学筹集部分医药费,计划筹集450元,由全体班委同学分担,有5名同学闻讯后也自愿参加捐助,和班委同学一起平均分担,因此每个班委同学比原先少分担45元,问:该班班委有几个?

如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.

(1)求∠D的度数;
(2)若CD=1,求BD的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号