(本小题满分12分)已知椭圆,
为其右焦点,过F垂直于x轴的直线与椭圆相交所得的弦长为2.
(1)求椭圆C的方程;
(2)设直线,
与椭圆C相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点,求
的取值范围.
已知为抛物线
上一动点,
为其对称轴上一点,直线
与抛物线的另一个交点为
.当
为抛物线的焦点且直线
与其对称轴垂直时,△
的面积为
.
(1)求抛物线的标准方程;
(2)记,若
的值与
点位置无关,则称此时的点A为“稳定点”,试求出所有“稳
定点”,若没有,请说明理由.
已知动点与两定点
、
连线的斜率之积为
.
(1)求动点的轨迹C的方程;
(2)若过点的直线
交轨迹
于M、N两点,且轨迹
上存在点E使得四边形OMEN(O为坐标原点)为平行四边形,求直线
的方程.
直三棱柱中,
,
分别是
的中点,
,
为棱
上的点.
(1)证明:;
(2)是否存在一点,使得平面
与平面
所成锐二面角的余弦值为
?
若存在,说明点的位置,若不存在,说明理由.
已知双曲线的方程为:
(1)求双曲线的离心率;
(2)求与双曲线有公共的渐近线,且经过点
(
)的双曲线的方程.
设命题;命题
.
如果命题“为真命题,“
”为假命题,求实数
的取值范围.