(本小题满分12分)已知数列、
满足
,且
,
(1)令,求数列
的通项公式;
(2)求数列的通项公式及前
项和公式
.
(本小题满分12分)如图,四棱锥中,侧面PDC是边长为2的正三角形,且与底面
垂直,底面ABCD是面积为
的菱形,
为锐角,M为PB的中点。
(1)求证
(2)求二面角的大小
(3)求P到平面的距离
(本小题满分13分)某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为
;汽车走公路②堵车的概率为
,不堵车的概率为
.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(Ⅰ)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;
(Ⅱ)在(1)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望
(本小题满分12分)已知函数的最小正周期为
.
(1)求的单调递增区间;
(2)在中,角
,
,
的对边长分别是
,
,
满足
,求函数
的取值范围.
若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列是调和数列,对于各项都是正数的数列
,满足
.
(Ⅰ)证明数列是等比数列;
(Ⅱ)把数列中所有项按如图所示的规律排成一个三角形
数表,当时,求第
行各数的和;
(Ⅲ)对于(Ⅱ)中的数列,证明:
.