水平放置的平行金属板AB间的距离d=0.1m,板长L=0.3m,在金属板的左端竖直放置一带有小孔的挡板,小孔恰好位于AB板的正中间,距金属板右端x=0.5m处竖直放置一足够大的荧光屏,现在AB板间加如图(b)所示的方波形电压,已知U0=1.0×102V,在挡板的左侧,有大量带正电的相同粒子以平行于金属板方向的速度持续射向挡板,粒子的质量m=1.0×10-7kg,电荷量q=1.0×10-2C,速度大小均为v0=1.0×104m/s,带电粒子的重力不计,则:
(1)求粒子在电场中的运动时间;
(2)求在t=0时刻进入的粒子打在荧光屏上的位置到O点的距离;
(3)请证明粒子离开电场时的速度均相同;
(4)若撤去挡板,求荧光屏上出现的光带长度。
如图所示,一个质量为m =2.0×10-11kg,电荷量q = +1.0×10-5C的带电微粒(重力忽略不计),从静止开始经U1=100V电压加速后,水平进入两平行金属板间的偏转电场中。金属板长L=20cm,两板间距d =10cm..求:
(1)微粒进入偏转电场时的速度v0是多大?
(2)若微粒射出偏转电场时的偏转角为θ=30°,并接着进入一个方向垂直于纸面向里的匀强磁场区,则两金属板间的电压U2是多大?
(3)若该匀强磁场的宽度为D =10cm,为使微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大?
如图所示,竖直平面内的光滑弧形轨道的底端恰好与光滑水平面相切。质量为M=2.0kg的小物块B静止在水平面上。质量为m=1.0kg的小物块A从距离水平面高h=0.45m的P点沿轨道从静止开始下滑,经过弧形轨道的最低点Q滑上水平面与B相碰,碰后两个物体以共同速度运动。取重力加速度g=10m/s2。求
(1)A经过Q点时速度的大小v0;
(2)碰撞过程中系统(A、B)损失的机械能ΔE.
飞机着陆后以6m/s2大小的加速度做匀减速直线运动,其着陆速度为60m/s,求:
(1)它着陆后12s内滑行的位移s
(2)静止前4s内飞机滑行的位移s、
图中MN表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B.一带电粒子从平板上的狭缝O处以垂直于平板的初速v射入磁场区域,最后到达平板上的P点.已知B、m、 v以及P到O的距离l,不计重力,求此粒子的电量q.
如图所示,边长为L的正方形区域abcd内存在着匀强电场。电量为q、动能为Ek的带电粒子从a点沿ab方向进入电场,不计重力。
⑴若粒子从c点离开电场,求电场强度的大小和粒子离开电场时的动能;
⑵若粒子从bc边离开电场时动能为Ek/,则电场强度为多大?