(本小题满分14分))
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。
(Ⅰ)写出图一表示的市场售价与时间的函数关系式;写出图二表示的种植成本与上市时间的函数关系式
;
(Ⅱ)假如设定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102㎏,时间单位:天)
甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从道备选题中一次性抽取
道题独立作答,然后由乙回答剩余
题,每人答对其中
题就停止答题,即闯关成功.已知在
道备选题中,甲能答对其中的
道题,乙答对每道题的概率都是
.
(Ⅰ)求甲、乙至少有一人闯关成功的概率;
(Ⅱ)设甲答对题目的个数为ξ,求ξ的分布列及数学期望.
如图,在直三棱柱中,
,
,
分别为
,
的中点,四边形
是边长为
的正方形.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求二面角的余弦值.
已知等差数列满足:
,
,
的前n项和为
.
(Ⅰ)求及
;
(Ⅱ)令bn=(
),求数列
的前n项和
.
已知函数.
(Ⅰ) 求函数的最小值和最小正周期;
(Ⅱ)已知内角
的对边分别为
,且
,若向量
与
共线,求
的值.
(本大题12分)已知关于x的方程(1-a)x2+(a+2)x-4=0,a∈R,求:
(1)方程有两个正根的充要条件;
(2)方程至少有一正根的充要条件.