(本题8分)把下列各数表示的点画在数轴上,并用“”把这些数连接起来.
,
,
,
,
,
.
已知关于x的方程x2+ax+a﹣2=0.若该方程的一个根为1,求a的值及该方程的另一根.
如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;
(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.
为了推进学校“阳光体育”活动的正常开展,丰富学生课外文体活动的种类,某市计划对A.B两类薄弱学校的体育设施全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)若该市的A类学校不超过5所,则B类学校至少有多少所?
(3)该市计划今年对A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?
已知:如图(1),△AOB和△COD都是等边三角形,连接AC、BD交与点P.
(1)求证:AC=BD;
(2)求∠APB的度数;
(3)如图(2),将(1)中的△AOB和△COD改为等腰三角形,并且OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD的等量关系为,∠APB的大小为.
已知关于x、y的方程组(实数m是常数).
(1)若x+y=1,求实数m的值;
(2)若-1≤x-y≤5,求m的取值范围;
(3)在(2)的条件下,化简:.