游客
题文

(本题12分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-).
(1)求双曲线方程;
(2)若点M(3,m)在双曲线上,求证:点M在以F1F2为直径的圆上;
(3)在(2)的条件下求△F1MF2的面积.

科目 数学   题型 解答题   难度 较易
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知函数
(1)求函数的单调增区间;
(2)若,解不等式
(3)若,且对任意,方程总存在两不相等的实数根,求的取值范围.

在四棱锥中,平面,底面是梯形,

(1)求证:平面平面
(2)设为棱上一点,,试确定的值使得二面角

已知函数
(1)当时,求函数的值域;
(2)设的内角的对应边分别为,且,若向量
与向量共线,求的值.

已知命题是方程的两个实根,且不等式对任意恒成立;命题:不等式有解,若命题为真,为假,求实数的取值范围.

已知椭圆上的点到左、右两焦点的距离之和为,离心率为
(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点的直线交椭圆于两点.
(1)若轴上一点满足,求直线斜率的值;
(2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号