(本小题满分12分)已知,直线
,椭圆
,
分别为椭圆
的左、右焦点.
(1)当直线过右焦点
时,求直线
的方程;
(2)设直线与椭圆
交于
两点,
,
的重心分别为
.若原点
在以线段
为直径的圆内,求实数
的取值范围.
【2015高考四川,文20】如图,椭圆E:(a>b>0)的离心率是
,点P(0,1)在短轴CD上,且
=-1
(Ⅰ)求椭圆E的方程;
(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得为定值?若存在,求λ的值;若不存在,请说明理由.
【2015高考陕西,文20】如图,椭圆经过点
,且离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)经过点,且斜率为
的直线与椭圆
交于不同两点
(均异于点
),证明:直线
与
的斜率之和为2.
【2015高考山东,文21】平面直角坐标系中,已知椭圆
:
的离心率为
,且点(
,
)在椭圆
上.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆:
,
为椭圆
上任意一点,过点
的直线
交椭圆
于
两点,射线
交椭圆
于点
.
(ⅰ)求的值;
(ⅱ)求面积的最大值.
【2015高考湖南,文20】(本小题满分13分)已知抛物线的焦点F也是椭圆
的一个焦点,
与
的公共弦长为
,过点F的直线
与
相交于
两点,与
相交于
两点,且
与
同向.
(Ⅰ)求的方程;
(Ⅱ)若,求直线
的斜率.
【2015高考湖北,文22】一种画椭圆的工具如图1所示.是滑槽
的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且
,
.当栓子D在滑槽AB内作往复运动时,带动N绕
转动,M处的笔尖画出的椭圆记为C.以
为原点,
所在的直线为
轴建立如图2所示的平面直角坐标系.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设动直线与两定直线
和
分别交于
两点.若直线
总与椭圆
有且只有一个公共点,试探究:
的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.