如图,多面体的直观图及三视图如图所示,
分别为
的中点.
(1)求证:平面
;
(2)求多面体的体积.
2008年5月12日,四川汶川发生8.0级特大地震,通往灾区的道路全部中断. 5月12日晚,抗震救灾指挥部决定从水路(一支队伍)、陆路(东南和西北两个方向各一支队伍)和空中(一支队伍)同时向灾区挺进.在5月13日,仍时有较强余震发生,天气状况也不利于空中航行. 已知当天从水路抵达灾区的概率是,从陆路每个方向抵达灾区的概率都是
,从空中抵达灾区的概率是
.
(1)求在5月13日恰有1支队伍抵达灾区的概率;
(2)求在5月13日抵达灾区的队伍数的数学期望.
在中,
分别是角A、B、C的对边,
,且
.
(1)求角A的大小;
(2)求的值域.
已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)证明: 为定值;
(2)若△POM的面积为,求向量
与
的夹角;
(3)证明直线PQ恒过一个定点.
对于三次函数。
定义:(1)设是函数
的导数
的导数,若方程
有实数解
,则称点
为函数
的“拐点”;
定义:(2)设为常数,若定义在
上的函数
对于定义域内的一切实数
,都有
成立,则函数
的图象关于点
对称。
己知,请回答下列问题:
(1)求函数的“拐点”
的坐标
(2)检验函数的图象是否关于“拐点”
对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数,使得它的“拐点”是
(不要过程)