2013年6月,我国成功实现目标飞行器“神舟十号”与轨道空间站“天宫一号”的对接.如图所示,已知“神舟十号”从捕获“天宫一号”到实现对接用时t,这段时间内组合体绕地球转过的角度为θ(此过程轨道不变,速度大小不变),地球半径为R,地球表面重力加速度为g,万有引力恒量G,不考虑地球自转;求:
(1)地球质量M;
(2)组合体运动的周期T;
(3)组合体所在圆轨道离地高度H。
竖直放置的两块足够长的平行金属板间有匀强电场.其电场强度为E,在该匀强电场中,用丝线悬挂质量为m的带电小球,丝线跟竖直方向成θ角时小球恰好平衡,如图所示.
(1)小球带电荷量是多少?
(2)若剪断丝线,小球碰到金属板需多长时间?
如图所示,质量MA=2m的直杆A悬于离地面很高处,杆A上套有质量MB=m的小环B。将小环B由静止释放,环做加速度a=3/4g的匀加速运动。经过时间后,将杆A上方的细线剪断,杆A开始下落。杆A足够长,环B始终未脱离杆A,不计空气阻力,已知重力加速度为g,求:
(1)杆A刚下落时的加速度a';
(2)在小环B下落的整个过程中,环B对杆A所做的功W;
(3)在小环B下落的整个过程中,系统产生的热量Q。
(由于地球自转的影响,地球表面的重力加速度会随纬度的变化而有所不同:若地球表面两极处的重力加速度大小为g0,在赤道处的重力加速度大小为g,地球自转的周期为T,引力常量为G,地球可视为质量均匀分布的球体。求: (1)地球半径R;(2)地球的平均密度;
(3)若地球自转速度加快,当赤道上的物体恰好能“飘”起来时,求地球自转周期T'。
如图所示、为在某十字路口附近的一橡胶减速带,一警用巡逻车正以20 m/s的速度行驶在该路段,在离减速带50 m时巡逻车开始做匀减速运动,结果以5 m/s的速度通过减速带,通过后立即以2.5m/s2的加速度加速到原来的速度。警用巡逻车可视为质点,减速带的宽度忽略不计。求由于减速带的存在巡逻车通过这段距离多用的时间。
如图所示,光滑水平面上放置质量均为M=2 kg的甲、乙两辆小车,两车之间通过一感应开关相连(当滑块滑过感应开关时,两车自动分离).甲车上表面光滑,乙车上表面与滑块P之间的动摩擦因数μ=0.5.一根通过细线拴着(细线未画出)且被压缩的轻质弹簧固定在甲车的左端,质量为m=1 kg的滑块P(可视为质点)与弹簧的右端接触但不相连,此时弹簧的弹性势能E0=10 J,弹簧原长小于甲车长度,整个系统处于静止状态.现剪断细线,求:
①滑块P滑上乙车前的瞬时速度的大小.
②滑块P滑上乙车后最终未滑离乙车,滑块P在乙车上滑行的距离.(取g=10 m/s2)