(本小题满分13分)如图,椭圆的离心率为
,
轴被曲线
截得的线段长等于
的短轴长.
与
轴的交点为M,过坐标原点O的直线
与
相交于点A、B.
(1)求,
的方程;
(2)求证:MA⊥MB.
(本小题满分12分)
设是正项数列
的前n项和且
.
(1)求; (2)
(本小题满分12分)
如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的大小;
(本小题满分12分)
甲、乙两人在罚球线投球命中的概率分别为,投中得1分,投不中得0分.
(Ⅰ)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望;
(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;
(本小题满分10分)已知.
(I)求sinx-cosx的值;
(Ⅱ)求的值.
(本小题14分)已知函数
的图像与函数
的图像关于点
对称
(1)求函数的解析式;
(2)若,
在区间
上的值不小于6,求实数a的取值范围.