游客
题文

如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,   AB∥DC.

(1)求证:D1C⊥AC1
(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

(本小题满分10分)如图所示,已知为圆的直径,是圆上的两个点,,交

(1)求证:是劣弧的中点;
(2)求证:

(本小题满分16分)已知函数处的切线与直线平行.
(1)求实数的值;
(2)若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.

(本小题满分16分)对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “线性数列”.
(1)若,数列是否为“线性数列”?若是,指出它对应的实常数,若不是,请说明理由;
(2)证明:若数列是“线性数列”,则数列也是“线性数列”;
(3)若数列满足为常数.求数列项的和.

(本小题满分16分)已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且APB面积的最大值为2
(1)求椭圆C的方程及离心率;
(2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.

(本小题满分14分)某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.

(1)分别用表示和S的函数关系式,并给出定义域;
(2)怎样设计能使S取得最大值,并求出最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号