游客
题文

(.重庆市A卷,第25题,12分)如图1,在△ABC中,ACB=90°,BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的线段,两垂线交于点D,连接DB,点F是BD的中点.DH⊥AC,垂足为H,连接EF,HF。
     
2图1                                                   图2
(1)如图1,若点H是AC的中点,AC=,求AB,BD的长。
(2)如图1,求证:HF=EF。
(3)如图2,连接CF,CE,猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

阅读材料,解答问题:
命题:如图,在锐角△ABC中,BC=a,CA=b,AB=c,ΔABC的外接圆半径为R,
2R.

证明:连结CO并延长交⊙O于点D,连结DB,则∠D=∠A,因为CD是⊙O的直径,所以∠DBC=900,在Rt△DBC中,sinD=,所以sinA=,即,同理:,∴ 2R.
请阅读前面所给的命题和证明后,完成下面(1)(2)两题:
(1)前面阅读材料中省略了“”的证明过程,请你把“”的证明过程补写出来.
(2)直接运用阅读材料中命题的结论解题:已知锐角△ABC中, BC=,CA=,∠A=600,求△ABC的外接圆半径 R及∠C.

如图,已知A、B、C、D均在已知圆上,AD‖BC,CA平分∠BCD,
∠ADC=,四边形ABCD周长为10.

(1)求此圆的半径;
(2)求圆中阴影部分的面积.

(5分)如图,已知⊙O直径为4cm,点M为弧AB的中点,弦MN、AB交于点P,
APM=60°,求弦MN的长.

(5分)

王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.

(1)请求出球飞行的最大水平距离.
(2)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号