(本小题10分)
如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一直线上. 小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°. 已知点D到地面的距离DE为1.56m,EC =21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数点后一位).参考数据:tan47°≈1.07,tan42°≈0.90.
已知抛物线过点A(1,0),顶点为B,且抛物线不经过第三象限。
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线经过点B,且于该抛物线交于另一点C(
),求当x≥1时y1的取值范围。
已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O 上运动(不与点B重合),连接CD,且CD=OA.
(1)当OC=时(如图),求证:CD是⊙O的切线;
(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.
①当D为CE中点时,求△ACE的周长;
②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE·ED的值;若不存在,请说明理由。
如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数(x>0,k≠0)的图像经过线段BC的中点D.
(1)求k的值;
(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。
如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.
(1)求船P到海岸线MN的距离(精确到0.1海里);
(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.
在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:
11 |
10 |
6 |
15 |
9 |
16 |
13 |
12 |
0 |
8 |
|
2 |
8 |
10 |
17 |
6 |
13 |
7 |
5 |
7 |
3 |
|
12 |
10 |
7 |
11 |
3 |
6 |
8 |
14 |
15 |
12 |
(1)求样本数据中为A级的频率;
(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;
(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.