游客
题文

小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为,求△ABC的面积.
小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:

(1)求图1中△ABC的面积;
参考小明解决问题的方法,完成下列问题:
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).
①利用构图法在答题卡的图2中画出三边长分别为的格点△DEF;
②计算△DEF的面积是          
(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF.若PQ=,PR=,QR=,求六边形AQRDEF的面积.

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.
(1)观察图②, 阴影部分的面积为_______________;请你写出三个代数式(m+n) 2
(m-n) 2、mn之间的等量关系是____________________________________;
(2)若x+y=7,xy=10,则(x-y) 2=_________________;
(3)实际上有许多代数恒等式可以用图形的面积来表示.
如图③,它表示了_______________________________________________.
(4)试画出一个几何图形,使它的面积能表示(m+n)(3m+n)=3m2+4mn+n2

如图,在正方形网格上的一个△ABC.

(1)作△ABC关于直线MN的对称图形(不写作法);
(2)以P为一个顶点作与△ABC全等的三角形(规定点P与
点B对应,另两顶点都在图中网格交点处),则可作出
个三角形.

如图,在Rt△ABC中,∠C=90°,BC=6 cm,CA=8 cm,动点P从点C出
发,以每秒2 cm的速度沿CA、AB运动到点B,则从C点出发多少秒时,可使
SBCPSABC

如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连结FC
(AB>AE)

△AEF与△EFC是否相似?若相似,证明你的结论;若不相似,请说明理由;
=k,是否存在这样的k值,使得△AEF∽△BFC,若存在,证明你的结论并求出k的值;若不存在,说明理由

如图,∠ABC=∠CDB=90°,AC=a,BC=b.

当BD与a、b之间满足怎样的关系时,△ABC∽△CDB?
过A作BD的垂线,与DB的延长线交于点E,若△ABC∽△CDB.
求证四边形AEDC为矩形(自己完成图形).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号