游客
题文

(本小题满分12分)已知函数在x=1处的切线方程为x-y=1.
(1)求f(x)的表达式;
(2)若f(x)≥g(x)恒成立,则称f(x)为g(x)的一个“上界函数”,当(1)中的函数f(x)为函数g(x)=lnx(t∈R)的一个上界函数时,求实数t的取值范围;
(3)当m>0时,对于(1)中的f(x),讨论F(x)= f(x)+在区间(0,2)上极值点的个数.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

设函数,函数的图象与轴的交点也在函数的图象上,且在此点有公切线.
(Ⅰ)求的值;
(Ⅱ)试比较的大小.

已知向量,且,其中A、B、C是ABC的内角,分别是角A,B,C的对边。
(Ⅰ)求角C的大小;
(Ⅱ)求的取值范围;

已知幂函数为偶函数,且在区间上是单调增函数
(1)求函数的解析式;
(2)设函数,其中.若函数仅在处有极值,求的取值范围.

记关于的不等式的解集为,不等式的解集为
(1)若,求
(2)若,求正数的取值.

已知函数,其中是自然对数的底数,
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号