游客
题文

已知幂函数上单调递增,函数
(1)求的值;
(2)当时,记的值域分别为集合,若,求实数的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 原根与指数
登录免费查看答案和解析
相关试题

本题共有2个小题,第1小题满分4分,第2个小题满分8分。
已知复数是虚数单位)在复平面上对应的点依次为,点是坐标原点.
(1)若,求的值;
(2)若点的横坐标为,求.

如果数列同时满足:(1)各项均不为,(2)存在常数k, 对任意都成立,则称这样的数列为“类等比数列” .由此等比数列必定是“类等比数列” .问:
(1)各项均不为0的等差数列是否为“类等比数列”?说明理由.
(2)若数列为“类等比数列”,且(a,b为常数),是否存在常数λ,使得对任意都成立?若存在,求出λ;若不存在,请举出反例.
(3)若数列为“类等比数列”,且(a,b为常数),求数列的前n项之和;数列的前n项之和记为,求.

已知椭圆C过点,两焦点为是坐标原点,不经过原点的直线与该椭圆交于两个不同点,且直线的斜率依次成等比数列.
(1)求椭圆C的方程;
(2)求直线的斜率
(3)求面积的范围.

已知.
(1)当,时,若不等式恒成立,求的范围;
(2)试判断函数内零点的个数,并说明理由.

某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为千元.
(1)写出关于的函数表达式,并求该函数的定义域;
(2)求该储油罐的建造费用最小时的的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号