本题共有2个小题,第1小题满分4分,第2个小题满分8分。
已知复数(
是虚数单位)在复平面上对应的点依次为
,点
是坐标原点.
(1)若,求
的值;
(2)若点的横坐标为
,求
.
如果数列同时满足:(1)各项均不为
,(2)存在常数k, 对任意
都成立,则称这样的数列
为“类等比数列” .由此等比数列必定是“类等比数列” .问:
(1)各项均不为0的等差数列是否为“类等比数列”?说明理由.
(2)若数列为“类等比数列”,且
(a,b为常数),是否存在常数λ,使得
对任意
都成立?若存在,求出λ;若不存在,请举出反例.
(3)若数列为“类等比数列”,且
,
(a,b为常数),求数列
的前n项之和
;数列
的前n项之和记为
,求
.
已知椭圆C过点,两焦点为
、
,
是坐标原点,不经过原点的直线
与该椭圆交于两个不同点
、
,且直线
、
、
的斜率依次成等比数列.
(1)求椭圆C的方程;
(2)求直线的斜率
;
(3)求面积的范围.
已知.
(1)当,
时,若不等式
恒成立,求
的范围;
(2)试判断函数在
内零点的个数,并说明理由.
某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,(
为圆柱的高,
为球的半径,
).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为
千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为
千元.
(1)写出关于
的函数表达式,并求该函数的定义域;
(2)求该储油罐的建造费用最小时的的值.