知识迁移
我们知道,函数的图像是由二次函数
的图像向右平移m个单位,再向上平移n个单位得到.类似地,函数
的图像是由反比例函数
的图像向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n).
理解应用
函数的图像可以由函数
的图像向右平移 个单位,再向上平移 个单位得到,其对称中心坐标为 .
灵活运用
如图,在平面直角坐标系xOy中,请根据所给的的图像画出函数
的图像,并根据该图像指出,当x在什么范围内变化时,
≥
?
实际应用
某老师对一位学生的学习情况进行跟踪研究.假设刚学完新知识时的记忆存留量为1.新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为;若在
(
≥4)时进行一次复习,发现他复习后的记忆存留量是复习前的2倍(复习时间忽略不计),且复习后的记忆存量随x变化的函数关系为
.如果记忆存留量为
时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x为何值时,是他第二次复习的“最佳时机点”?
解应用题:
某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.
类型 价格 |
A型 |
B型 |
进价(元/盏) |
40 |
65 |
标价(元/盏) |
60 |
100 |
这两种台灯各购进多少盏?
在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?
初中生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).
请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了名学生;
将图①补充完整;
求出图②中C级所占的圆心角的度数;
根据抽样调查结果,请你估计该区近20000名初中生中大
约有多少名学生学习态度达标(达标包括A级和B级)?
已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分CAM交⊙O于D,过D作DE⊥MN于E.
求证:DE是⊙O的切线;
若
cm,
cm,求⊙O的半径.
如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为AB的等腰梯形,上底CD的端点在圆周上,且CD=10cm.求图中阴影部分的面积.
如图,直线:
与直线
:
相交于点
.
求
的值;
不解关于
的方程组请你直接写出它的解;
直线
:
是否也经过点
?请说明理由.