下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗
(吨标准煤)的几组对照数据
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出关于
的线性回归方程
;
(3)已知该厂技术改造前吨甲产品能耗为
吨标准煤;试根据(2)求出的线性回归方程,预测生产
吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(本小题满分12分)
如图,在正三棱柱.
(I)若,求点
到平面
的距离;
(Ⅱ)当为何值时,二面角
的正弦值为
?
(本小题满分12分)
将如下6个函数:,分别写在6张小卡片上,放入盒中.
(Ⅰ)现从盒子中任取2张卡片,将卡片上的函数相加得到一个新函数,求所得函数是偶函数的概率;
(Ⅱ)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有奇函数卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
(本小题满分10分)锐角三角形ABC的三内角A、B、C所对边的长分别为
,设向量
,且
(Ⅰ)求角B的大小;
(Ⅱ)若,求
的取值范围.
(本小题满分12分)
已知A(-3,0),B(3,0),三角形PAB的内切圆的圆心M在直线上移动。
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)某同学经研究作出判断,曲线C在P点处的切线恒过点M,试问:其判断是否正确?若正确,请给出证明;否则说明理由。
(示范性高中做)
已知数列的首项
前
项和为
,且
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列
的前n项和
.