(本小题满分12分)
将如下6个函数:,分别写在6张小卡片上,放入盒中.
(Ⅰ)现从盒子中任取2张卡片,将卡片上的函数相加得到一个新函数,求所得函数是偶函数的概率;
(Ⅱ)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有奇函数卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
(本小题12分)已知向量.
(1)若‖
,求
;
(2)当时,求
的最值。
(本小题12分)已知,
,
若,求实数m的取值范围.
(本小题满分12分)
P、Q、M、N四点都在椭圆上,F为椭圆在y轴正半轴上的焦点.已知
与
共
线,且与
共线.求四边形PMQN的面积的最小值和最大值.
(本小题满分12分)在平面直角坐标系xOy中,有一个以为和
焦点、离心率为
的椭圆.设椭圆在第一象限的部分为曲线C, 动点P在C上, C在点P处
的切线与x , y轴的交点分别为A、B,且向量.求:
(1)点M的轨迹方程;
(2)的最小值.
(本小题满分12分)
设,
两点在抛物线
上,
是
的垂直平分线.
(1)当且仅当
取何值时,直线
经过抛物线的焦点
?证明你的结论;
(2)当直线的斜率为2时,求
在
轴上截距的取值范围.