(本小题满分12分)
设数列 是公比小于1的正项等比数列,
为数列
的前
项和,已知
,且
成等差数列。
(1)求数列{an}的通项公式;
(2)若,且数列
是单调递减数列,求实数
的取值范围。
《选修4-5:不等式选讲》已知函数.
(1)证明:;
(2)求不等式的解集.
《选修4-4:坐标系与参数方程》已知直线L的参数方程:(t为参数)和圆C的极坐标方程:
(θ为参数).
(1)求圆C的直角坐标方程.
(2)判断直线L和圆C的位置关系.
已知函数在点
的切线方程为
.
(1)求函数的解析式;
(2)设,求证:
在
上恒成立.
已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为
,且
,点(1,
)在椭圆C上.
(1)求椭圆C的方程;
(2)过的直线
与椭圆
相交于
两点,且
的面积为
,求直线
的方程.
为迎接高一新生报到,学校向高三甲、乙、丙、丁四个实验班征召志愿者.统计如下:
班级 |
甲 |
乙 |
丙 |
丁 |
志愿者人数 |
45 |
60 |
30 |
15 |
为了更进一步了解志愿者的来源,采用分层抽样的方法从上述四个班的志愿者中随机抽取50名参加问卷调查.
(1)从参加问卷调查的50名志愿者中随机抽取两名,求这两名来自同一个班级的概率;
(2)在参加问卷调查的50名志愿者中,从来自甲、丙两个班级的志愿者中随机抽取两名,用表示抽得甲班志愿者的人数,求
的分布列和数学期望.