(本小题满分12分)为了更好的了解某校高三学生期中考试的数学成绩情况,从所有高三学生中抽取40名学生,将他们的数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.
(1)若该校高三年级有1800人,试估计这次考试的数学成绩不低于60分的人数及60分以上的学生的平均分;
(2)若从[40,50)与[90,100]这两个分数段内的学生中随机选取两名学生,求这两名学生成绩之差的绝对值不大于10的概率
(本小题满分12分)
已知条件p: 条件q:
若
的充分但不必要条件,求实数
的取值范围.
(本小题满分12分)
本地一公司计划2011年在省、市两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,省、市电视台的广告收费标准分别为元/分钟和200元/分钟,规定省、市两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在省、市两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
(本小题满分12分)
已知向量且A、B、C分别为△ABC的三边a、b、c所对的角.
(1)求角C的大小;
(2)若,求c边的长.
(本小题满分12分)
已知的图象经过点
,且在
处的切线方程是
(1)求的解析式;
(2)点是直线
上的动点,自点
作函数
的图象的两条切线
、
(点为切点),求证直线
经过一个定点,并求出定点的坐标。
(本小题满分12分)
已知椭圆的离心率为
,点
是椭圆上的一点,且点
到椭圆
的两焦点的距离之和为4,
(1)求椭圆的方程;
(2)过点作直线
与椭圆
交于
两点,
是坐标原点,设
,是否存在这样的直线
,使四边形
的对角线长相等?若存在,求出
的方程,若不存在,说明理由。