某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(附:,
,其中
,
为样本平均值)
已知函数(其中
且
),
是
的反函数.
(1)已知关于的方程
在
上有实数解,求实数
的取值范围;
(2)当时,讨论函数
的奇偶性和单调性;
(3)当,
时,关于
的方程
有三个不同的实数解,求
的取值范围.
某工厂某种航空产品的年固定成本为万元,每生产
件,需另投入成本为
,当年产量不足
件时,
(万元).当年产量不小于
件时,
(万元).每件商品售价为
万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量
(件)的函数解析式;
(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?
已知幂函数(
)在
是单调减函数,且为偶函数.
(1)求的解析式;
(2)讨论的奇偶性,并说明理由.
设是定义在
上函数,且对任意
,当
时,都有
成立.解不等式
.
解不等式组.