已知函数f(x)=ax+x2,g(x)=xln a,a>1.
(1)求证:函数F(x)=f(x)-g(x)在(0,+∞)上单调递增;
(2)若函数y=-3有四个零点,求b的取值范围;
(3)若对于任意的x1,x2∈[-1,1]时,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范围.
(本题12分)如图,在四棱锥E-ABCD中,AB⊥平面BCE,DC⊥平面BCE,AB=BC=CE=2CD=2,;
(1)求证:平面ADE⊥平面ABE;
(2)求三棱锥A-BDE的体积.
(本小题满分12分)已知函数,且当
时,
的最小值为2,
(1)求的值,并求
的单调递增区间;
(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的
,再将所得的图象向右平移
个单位,得到函数
的图象,求方程
在区间
上所有根之和.
(本小题满分12分)设数列的前n项和为
,点
均在函数y=x-2的图像上.
(1)求数列的通项公式;
(2)求;
(3)在(2)的条件下,求使得对所有
都成立的最大整数m.
(本小题满分7分)选修4—5:不等式选讲
已知a+b=1,对,b∈(0,+∞),
+
≥|2x-1|-|x+1|恒成立,
(Ⅰ)求+
的最小值;
(Ⅱ)求x的取值范围。
选修4—4:坐标系与参数方程
已知曲线的参数方程:
(
为参数), 曲线
上的点
对应的参数
,以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)已知直线过点P(1,0),且与曲线
于A,B两点,求
的范围.