游客
题文

如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.

(Ⅰ)求证:平面CBE⊥平面CDE;
(Ⅱ)求二面角C—BE—F的余弦值.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

已知
(1)证明:
(2)计算的值

已知集合
(1)求;(2)求;(3)若,求a的取值范围。

已知点,圆,过点的动直线与圆交于两点,线段的中点为,O为坐标原点.
(1)求的轨迹方程;
(2)当时,求的方程及的面积.

已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程;
(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.
(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号