如图所示,无限宽广的匀强磁场分布在xoy平面内,x轴上下方磁场均垂直xoy 平面向里,x轴上方的磁场的磁感应强度为B,x轴下方的磁场的磁感应强度为4B/3。现有一质量为m,电量为-q带负电粒子以速度v0从坐标原点O沿y方向进入上方磁场。在粒子运动过程中,与x轴交于若干点。不计粒子的重力。求:
(1)粒子在x轴上方磁场做匀速圆周运动半径r1
(2)如把x上方运动的半周与x下方运动的半周称为一周期的话,则每经过一周期,在x轴上粒子右移的平均速度。
(3)在与x轴的所有交点中,粒子两次通过同一点的坐标位置。
如图所示为一直角棱镜ABC,光从空气中以入射角θ从AB面上的P点进入棱镜,在AC面恰无光线射出。
①求棱镜的折射率。
②要使该光线能从AC面射出,θ角应如何变化?
在做“用油膜法测分子的大小”实验时,油酸酒精溶液的浓度为每104ml溶液中有纯油酸5mL,用注射器测得1mL上述溶液有液滴75滴。把1滴该溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在浅盘上,在玻璃板上描出油酸膜的轮廓,随后把玻璃板放在坐标纸上,计算得到轮廓范围内小正方形的个数为100个,已知坐标中小正方形的边长为1cm,求:
①该次实验中1滴油酸酒精溶液中纯油酸的体积是多少m3?
②按以上数据,估测出油酸分子的直径是多少?
如图所示空间分为Ⅰ,Ⅱ,Ⅲ三个足够长的区域,各边界面相互平行,其中Ⅰ,Ⅱ区域存在匀强电场EI=1.0×104 V/m,方向垂直边界面竖直向上;EⅡ=×105 V/m,方向水平向右,Ⅲ区域磁感应强度B=5.0 T,方向垂直纸面向里,三个区域宽度分别为d1=5.0 m,d2=4.0 m,d3=
m.一质量m=1.0×10-8 kg、电荷量q=1.6×10-6C的粒子从O点由静止释放,粒子重力忽略不计.求:
(1)粒子离开区域Ⅰ时的速度大小;
(2)粒子从区域Ⅱ进入区域Ⅲ时的速度方向与边界面的夹角;
(3)粒子从O点开始到离开Ⅲ区域时所用的时间.
如图甲所示,一正方形金属线框位于有界匀强磁场区域内,线框的右边紧贴着边界.t=0时刻对线框施加一水平向右的外力F,让线框从静止开始做匀加速直线运动,经过时间t0穿出磁场.图乙所示为外力F随时间t变化的图象.若线框质量为m、电阻R及图象中的F0、t0均为已知量,则根据上述条件,请你推出:
(1)磁感应强度B的表达式;
(2)线框左边刚离开磁场前瞬间的感应电动势E的表达式.
如图所示的电路中,两平行金属板A、B水平放置,两板间的距离d="40" cm。电源电动势E=24V,内电阻r="1" Ω,电阻R="15" Ω。闭合开关S,待电路稳定后,将一带正电的小球从B板小孔以初速度v0="4" m/s竖直向上射入板间。若小球带电量为q=1×10-2 C,质量为m=2×10-2 kg,不考虑空气阻力。那么,
(1)滑动变阻器接入电路的阻值为多大时,小球恰能到达A板.
(2)此时,电源的输出功率是多大.(取g="10" m/s2)