游客
题文

)阅读下面的材料,回答问题:
爱动脑筋的小明在学过用配方法解一元二次方程后,他发现二次三项式也可以配方,从而解决一些问题。例如:-6x+10=(-6x+9-9)+10=-9+10=+1≥1;因此-6x+10有最小值是1;
(1)尝试:-3-6x+5=-3(+2x+1-1)+5=-3+8,因此-3-6x+5有最大值是______
(2)应用:有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成一个的长方形花圃。能围成面积最大的花圃吗?如果能,请求出最大面积.

科目 数学   题型 解答题   难度 较易
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

某校有体育、音乐、书法、舞蹈四个活动小组,要求学生全员参加,每人限报一个小组.校学生会随机抽查了部分学生,对学生参加活动小组的情况进行一次统计,将所收集的数据绘制成如图所示的两幅不完整的统计图.请根据图中提供的信息解答下列问题:

(1)本次共抽查了多少学生?

(2)补全条形统计图并求出扇形统计图中“书法”所占圆心角的度数;

(3)已知该校共有1236名学生,请根据调查的结果估计该校参加书法活动小组的学生人数.

如图,网格中每个小方格都是边长为1个单位长度的正方形,点 A B C 的坐标分别为 A ( 2 , 3 ) B ( 5 , 1 ) C ( 3 , 1 ) .先将 ΔABC 沿一个确定方向平移,得到△ A 1 B 1 C 1 ,点 B 的对应点 B 1 的坐标是 ( 1 , 2 ) ;再将△ A 1 B 1 C 1 绕原点 O 顺时针旋转 90 ° ,得到△ A 2 B 2 C 2 ,点 A 1 的对应点为 A 2

(1)画出△ A 1 B 1 C 1 ,并直接写出点 A 1 的坐标;

(2)画出△ A 2 B 2 C 2 ,并直接写出 cos B 的值.

如图, 点 A B C 都在抛物线 y = a x 2 2 amx + a m 2 + 2 m 5 (其 中 1 4 < a < 0 ) 上, AB / / x 轴, ABC = 135 ° ,且 AB = 4

(1) 填空: 抛物线的顶点坐标为  (用 含 m 的代数式表示) ;

(2) 求 ΔABC 的面积 (用 含 a 的代数式表示) ;

(3) 若 ΔABC 的面积为 2 ,当 2 m 5 x 2 m 2 时, y 的最大值为 2 ,求 m 的值 .

阅读下面材料:

小明遇到这样一个问题:

如图1, ΔABC 中, ACB = 90 ° ,点 D AB 上,且 BAC = 2 DCB ,求证: AC = AD

小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:

方法1:如图2,作 AE 平分 CAB ,与 CD 相交于点 E

方法2:如图3,作 DCF = DCB ,与 AB 相交于点 F

(1)根据阅读材料,任选一种方法,证明 AC = AD

用学过的知识或参考小明的方法,解决下面的问题:

(2)如图4, ΔABC 中,点 D AB 上,点 E BC 上,且 BDE = 2 ABC ,点 F BD 上,且 AFE = BAC ,延长 DC FE ,相交于点 G ,且 DGF = BDE

①在图中找出与 DEF 相等的角,并加以证明;

②若 AB = kDF ,猜想线段 DE DB 的数量关系,并证明你的猜想.

如图,四边形 ABCD 内接于 O BAD = 90 ° ,点 E BC 的延长线上,且 DEC = BAC

(1)求证: DE O 的切线;

(2)若 AC / / DE ,当 AB = 8 CE = 2 时,求 AC 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号